1,058 research outputs found

    Short-range correlations and neutrinoless double beta decay

    Get PDF
    In this work we report on the effects of short-range correlations upon the matrix elements of neutrinoless double beta decay. We focus on the calculation of the matrix elements of the neutrino-mass mode of neutrinoless double beta decays of 48Ca and 76Ge. The nuclear-structure components of the calculation, that is the participant nuclear wave functions, have been calculated in the shell-model scheme for 48Ca and in the proton-neutron quasiparticle random-phase approximation (pnQRPA) scheme for 76Ge. We compare the traditional approach of using the Jastrow correlation function with the more complete scheme of the unitary correlation operator method (UCOM). Our results indicate that the Jastrow method vastly exaggerates the effects of short-range correlations on the neutrinoless double beta decay nuclear matrix elements.Comment: 12 pages, 3 figures, to appear in Physics Letters B (2007

    Thermal Model Analysis of Particle Ratios at GSI Ni-Ni Experiments Using Exact Strangeness Conservation

    Get PDF
    The production of hadrons in Ni-Ni at the GSI is considered in a hadronic gas model with chemical equilibrium. Special attention is given to the abundance of strange particles which are treated using the exact conservation of strangeness. It is found that all the data can be described using a temperature T = 70 pm 10 MeV and a baryon chemical potential mu_B = 720 pm 20 MeV.Comment: Revtex, 7 pages, 3 figures in postscript forma

    Statistical analysis of beta decays and the effective value of g(A) in the proton-neutron quasiparticle random-phase approximation framework

    Get PDF
    We perform a Markov chain Monte Carlo (MCMC) statistical analysis of a number of measured ground-state-to-ground-state single β+/electron-capture and β− decays in the nuclear mass range of A=62–142. The corresponding experimental comparative half-lives (logft values) are compared with the theoretical ones obtained by the use of the proton-neutron quasiparticle random-phase approximation (pnQRPA) with G-matrix-based effective interactions. The MCMC analysis is performed separately for 47 isobaric triplets and 28 more extended isobaric chains of nuclei to extract values and uncertainties for the effective axial-vector coupling constant gA in nuclear-structure calculations performed in the pnQRPA framework. As far as available, measured half-lives for two-neutrino ββ− decays occurring in the studied isobaric chains are analyzed as well

    Dynamics of polymer ejection from capsid

    Full text link
    Polymer ejection from a capsid through a nanoscale pore is an important biological process with relevance to modern biotechnology. Here, we study generic capsid ejection using Langevin dynamics. We show that even when the ejection takes place within the drift-dominated region there is a very high probability for the ejection process not to be completed. Introducing a small aligning force at the pore entrance enhances ejection dramatically. Such a pore asymmetry is a candidate for a mechanism by which a viral ejection is completed. By detailed high-resolution simulations we show that such capsid ejection is an out-of-equilibrium process that shares many common features with the much studied driven polymer translocation through a pore in a wall or a membrane. We find that the escape times scale with polymer length, τNα\tau \sim N^\alpha. We show that for the pore without the asymmetry the previous predictions corroborated by Monte Carlo simulations do not hold. For the pore with the asymmetry the scaling exponent varies with the initial monomer density (monomers per capsid volume) ρ\rho inside the capsid. For very low densities ρ0.002\rho \le 0.002 the polymer is only weakly confined by the capsid, and we measure α=1.33\alpha = 1.33, which is close to α=1.4\alpha = 1.4 obtained for polymer translocation. At intermediate densities the scaling exponents α=1.25\alpha = 1.25 and 1.211.21 for ρ=0.01\rho = 0.01 and 0.020.02, respectively. These scalings are in accord with a crude derivation for the lower limit α=1.2\alpha = 1.2. For the asymmetrical pore precise scaling breaks down, when the density exceeds the value for complete confinement by the capsid, ρ0.25\rho \gtrapprox 0.25. The high-resolution data show that the capsid ejection for both pores, analogously to polymer translocation, can be characterized as a multiplicative stochastic process that is dominated by small-scale transitions.Comment: 10 pages, 6 figure

    Improved short-range correlations and 0nbb nuclear matrix elements of 76Ge and 82Se

    Full text link
    We calculate the nuclear matrix elements of the neutrinoless double beta (0νββ0\nu\beta\beta) decays of 76^{76}Ge and 82^{82}Se for the light-neutrino exchange mechanism. The nuclear wave functions are obtained by using realistic two-body forces within the proton-neutron quasiparticle random-phase approximation (pnQRPA). We include the effects that come from the finite size of a nucleon, from the higher-order terms of nucleonic weak currents, and from the nucleon-nucleon short-range correlations. Most importantly, we improve on the presently available calculations by replacing the rudimentary Jastrow short-range correlations by the more advanced unitary correlation operator method (UCOM). The UCOM corrected matrix elements turn out to be notably larger in magnitude than the Jastrow corrected ones. This has drastic consequences for the detectability of 0νββ0\nu\beta\beta decay in the present and future double beta experiments.Comment: 5 pages, 2 figures, to appear in Physical Review C (Rapid Communication) 200

    On nuclear matrix element uncertainties in short range 0vBB decay

    Full text link
    The evaluation of short range contributions to neutrinoless double beta decay has been challenged due to critics of the ansatz of the nuclear matrix element calculations. We comment on the critics and uncertainties of these calculations and the effect on the derived limits.Comment: 3 pages, Latex, new arguments adde

    Nuclear matrix elements of neutrinoless double beta decay with improved short-range correlations

    Full text link
    Nuclear matrix elements of the neutrinoless double beta decays of 96Zr, 100Mo, 116Cd, 128Te, 130Te and 136Xe are calculated for the light-neutrino exchange mechanism by using the proton-neutron quasiparticle random-phase approximation (pnQRPA) with a realistic nucleon-nucleon force. The g_pp parameter of the pnQRPA is fixed by the data on the two-neutrino double beta decays and single beta decays. The finite size of a nucleon, the higher-order terms of nucleonic weak currents, and the nucleon-nucleon short-range correlations (s.r.c) are taken into account. The s.r.c. are computed by the traditional Jastrow method and by the more advanced unitary correlation operator method (UCOM). Comparison of the results obtained by the two methods is carried out. The UCOM computed matrix elements turn out to be considerably larger than the Jastrow computed ones. This result is important for the assessment of the neutrino-mass sensitivity of the present and future double beta experiments.Comment: Two figures, to be published in Physical Review C (2007) as a regular articl
    corecore